Polynomial τ - functions of the NLS - Toda hierarchy and the Virasoro singular vectors

نویسنده

  • Takeshi Ikeda
چکیده

A family of polynomial τ -functions for the NLS-Toda hierarchy is constructed. The hierarchy is associated with the homogeneous vertex operator representation of the affine algebra g of type A (1) 1 . These τ -functions are given explicitly in terms of Schur functions that correspond to rectangular Young diagrams. It is shown that an arbitrary polynomial τ -function which is an eigenvector of d, the degree operator of g, is contained in the family. By the construction, any τ -function in the family becomes a Virasoro singular vector. This consideration gives rise to a simple proof of known results on the Fock representation of the Virasoro algebra with c = 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric random matrices and the Pfaff lattice

0. Introduction 1. Borel decomposition and the 2-Toda lattice 2. Two-Toda τ -functions and Pfaffian τ̃ -functions 3. The Pfaffian Toda lattice and skew-orthogonal polynomials 4. The (s = −t)-reduction of the Virasoro vector fields 5. A representation of the Pfaffian τ̃ -function as a symmetric matrix integral 6. String equations and Virasoro constraints 7. Virasoro constraints with boundary terms...

متن کامل

Matrix Integrals, Toda Symmetries, Virasoro Constraints and Orthogonal Polynomials Dédié Avec Admiration Au Professeur Paul Malliavin

into the algebras of skew-symmetric As and lower triangular (including the diagonal) matrices Ab (Borel matrices). We show that this splitting plays a prominent role also in the construction of the Toda symmetries and their action on τ−functions; it also plays a crucial role in obtaining the Virasoro constraints for matrix integrals and it ties up elegantly with the theory of orthogonal polynom...

متن کامل

Phase Model Expectation Values and the 2-toda Hierarchy

We show that the scalar product of the phase model on a finite rectangular lattice is a (restricted) τ -function of the 2-Toda hierarchy. Using this equivalence we then show that the wave-functions of the hierarchy correspond to certain classes of boundary correlation functions of the model. 0. Introduction In [1], it was observed that the N × N domain wall partition function, ZN , of the six v...

متن کامل

Matrix Models of Two-Dimensional Gravity and Discrete Toda Theory

Recursion relations for orthogonal polynominals, arising in the study of the one-matrix model of two-dimensional gravity, are shown to be equvalent to the equations of the Todachain hierarchy supplemented by additional Virasoro constraints. This is the case without the double scaling limit. A discrete time variable to the matrix model is introduced. The discrete time dependent partition functio...

متن کامل

A ug 2 00 3 Virasoro Symmetries of the Extended Toda Hierarchy

We prove that the extended Toda hierarchy of [1] admits nonabelian Lie algebra of infinitesimal symmetries isomorphic to the half of the Virasoro algebra. The generators Lm, m ≥ −1 of the Lie algebra act by linear differential operators onto the tau function of the hierarchy. We also prove that the tau function of a generic solution to the extended Toda hierarchy is annihilated by a combination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002